skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gerritz, Lena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Burning plastic waste releases massive amounts of atmospheric particulate matter (PM), but its chemical composition and health-related properties are largely unelucidated. Here we characterize chemical composition of PM generated from burning common types of plastics and quantify reactive oxygen/chlorine species and PM oxidative potential (OP). We find that plastic burning PM contains high levels of environmentally persistent free radicals (EPFRs), transition metals, and polycyclic aromatic hydrocarbons. In the aqueous phase, PM generates hydrogen peroxide, •OH radicals, and carbon-centered organic radicals, exhibiting high levels of OP as characterized by dithiothreitol (DTT) and OH assays. Remarkably, plastic burning PM is associated with high concentrations of hypochlorous acid. Kinetic model simulations demonstrate that the PM respiratory deposition leads to •OH formation via complex redox reactions among its constituents and antioxidants in lung lining fluid. Our study highlights significant atmospheric and health implications for unregulated plastic burning, particularly common in many areas of developing countries. 
    more » « less